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Hopping Conductivity in the Quantum Hall Effect: Revival of Universal Scaling
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We have measured the temperature dependence of the conductivity sxx of a two-dimensional electron
system deep into the localized regime of the quantum Hall plateau transition. Using variable-range
hopping theory we extract directly the localization length j from this experiment. We use our results to
study the scaling behavior of j as a function of the filling factor distance jdnj to the critical point of the
transition. We find for all samples a power-law behavior j ~ jdnj2g in agreement with the theoretically
proposed universal exponent g � 2.35.
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The prominent feature of the quantum Hall effect
(QHE) is the emergence of quantized plateaus in the Hall
resistance of a two-dimensional electron system (2DES)
reflecting the localization of states at the Fermi edge.
A deeper understanding of this fascinating phenomenon
is gained from regarding the transition region between
adjacent QHE plateaus [1,2]. In this regime the dissipative
transport is governed by the delocalized states in the vicin-
ity of the Landau level center. The degree of localization
is expressed by the localization length j denoting the
typical extension of the electron wave function. For any
sample with a finite size L theory predicts the conductivity
tensor in the plateau transition to follow a scaling function
f (L�j) with a diverging localization length j � jdnj2g

[3] where dn � n 2 nc denotes the filling factor distance
to the critical point nc of the transition. The critical
exponent g � 2.35 6 0.03 was predicted to be universal,
its value determined numerically [1,4–6] and validated by
variation of the sample size [7]. Experimentally the scal-
ing of the conductivity near the critical point was verified
with great success for different samples by temperature,
current, and frequency dependent measurements of the
transition width [8–10]. These new parameters introduce
effective lengths LT ~ Tp�2, LI ~ Ip��21p�, and Lf ~

f1�z and thereby add additional exponents z and p. These
effective lengths replace the physical sample size L in the
scaling functions f�L�j�. Recent experiments extended
the focus to the transition from the quantum Hall state to
the Hall insulator [11–13]. In these investigations striking
similarities to the scaling behavior in the transition between
different QH states were observed [14] hinting of the same
universality class for both types of transitions [15,16].

In spite of the great success of scaling theory in the QHE
there are still some experiments not fitting into the picture
of universality. Nonuniversal exponents were observed
in the dependence of the transition width on temperature
[17], current [18], and frequency [19]. Other experiments
seem to contradict scaling theory at all, both for the Hall
plateau-insulator transition [20] and the transition between
QHE plateaus [21,22].

However, before making conclusions on a general fail-
ure of scaling theory it has to be considered that nearly all
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experiments do not measure the localization length j di-
rectly. Therefore an assumption about the functional form
and exponents z and p of the effective length Leff�T , I , f�
has to be made. The nonuniversal scaling exponents de-
duced from investigating the QHE transition width as a
function of T , I, and f then reflect only nonuniversal ex-
ponents p and z in Leff. Additionally, the measurements
focus mostly on the region close to critical points, where
j becomes larger than Leff. In this regime, however, the
mechanism of electronic transport at nonzero temperature
or frequency is not thoroughly understood. Addressing this
problem Shimshoni found in a recent theoretical work for
the Hall plateau-insulator transition that for T . 0 quan-
tum transport occurs only at some distance to the critical
point, namely in the regime of hopping conductivity [23].
Therefore, any lack of universal width scaling with T or f
does not necessarily allow one to draw conclusions on the
behavior of j.

In order to avoid such complications, we follow a
different approach to scaling. We directly evaluate
the localization length in the well understood regime of
variable-range hopping (VRH) conductivity [24]. We have
recently shown this method to be reliable for frequency
dependent measurements [25]. VRH dominates the con-
ductivity at low temperatures, when the localization length
becomes much smaller than the effective temperature
length LT . In the QHE regime the VRH conductivity is
given as [24,26,27]

sxx�T� � s0 exp�2
p

T0�T �, kBT0 � C
e2

4pee0j
,

(1)

with a temperature dependent prefactor s0 ~ 1�T .
The characteristic temperature T0 is determined by the
Coulomb energy at a length scale given by the localization
length j, the dimensionless constant C being on the
order of unity. With this direct access to j ~ 1�T0, it is
possible to test for scaling behavior of j at the edges of
the plateau as long as we are careful enough to stay within
the localized regime.

Earlier experiments confirmed the expected tempera-
ture dependence of sxx�T � and extracted j in the QHE
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regime [28,29]. In a recent experiment on the QH plateau-
insulator transition VRH conductivity following Eq. (1)
was also established to that regime and was used to de-
termine j, finding a rough agreement with the prediction
of universal scaling [30].

In this paper we show that when analyzing the conduc-
tivity deep into the localized regime of the quantum Hall
plateau transition we find a clear universal scaling behavior
of the localization length j ~ jdnj2g as a function of the
filling factor distance dn � n 2 nc to the critical point
at nc with a universal g � 2.35. Such a universality is
observed even in samples where nonuniversal exponents
extracted from temperature dependent peak-width scaling
are found. Going even further, we show that the conduc-
tivities sxx�T , dn� in the VRH regime for dn , 0.3 can
be scaled to a single parameter function of jdnjg�T as pre-
dicted by scaling theory for the critical regime.

The samples used in this work are based on modu-
lation doped GaAs�AlGaAs heterostructures with addi-
tional scatterers in the active region of the 2DES [31,32].
The scatterers are provided by doping the GaAs close to
the heterojunction with Si or Be, either as a d layer or
a weak homogeneous background. This results in rela-
tively low mobilities of a few 102�V s (see Table I). In
order to allow a highly sensitive two-point measurement
of very low conductivities the samples were patterned
into Corbino geometry using contacts fabricated by stan-
dard Ni�Au�Ge alloy annealing. Here the conductivity is
given by sxx � �I�2pV � ln�r2�r1� where r1 � 500 mm
and r2 � 550 mm are the inner and the outer radii of the
Corbino disk. The samples were mounted onto the cold
finger of a dilution refrigerator with a base temperature
below 20 mK and positioned into the center of a super-
conducting solenoid.

The sample conductivity sxx�B, T � as a function of
magnetic field B and temperature T was extracted from in-
dividually measured I-V characteristics by numerical dif-
ferentiation in the linear regime close to zero bias. This
method allowed us to measure the conductivity accurately
in a huge range between 10213 V21 in the plateau center
up to 1025 V21 in the maximum of the plateau transition.

In Fig. 1(a) the conductivity sxx�B, T� of sample S1
is shown for the transition between the QHE plateaus at
n � 1 and n � 2. We concentrate our studies on this
transition where the spin gap is sufficiently large to exclude
activated transport. The critical point nc of this transition,

TABLE I. Sample characteristics: Type of extra doping, elec-
tron density ne , and mobility me of the 2DES, the critical point
nc [33], and the width scaling exponent k for the n � 1 ! 2
transition.

ne me

Sample Doping (1015 m22) 102�V s nc k

S1 d-Be 2.1 2 1.29 0.66 6 0.02
S2 d Si 3.2 4 1.62 0.60 6 0.02
S3 hom. Be 2.4 12 1.52 0.62 6 0.03
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listed in Table I, is given by the position of the maximum
of sxx�n�.

Before analyzing the VRH transport we tested the con-
ventional scaling behavior of the plateau transition width.
Data for the full width at half maximum Dn of the peak in
sxx as a function of filling factor n � hn�eB are shown
in Fig. 1(b) for sample S1. For all investigated samples
Dn follows a power-law behavior Dn ~ Tk down to tem-
peratures below 60 mK. However, as already reported in
earlier work on similar samples [17] the critical exponents
k � p�2g as presented in Table I deviate considerably
from the proposed universal value k � 0.43 [8].

Let us now turn to a closer analysis of the VRH regime.
As shown in Fig. 1(c) for sample S1 the data fit well the
predicted temperature behavior of Eq. (1). We also tested
for activated behavior, Coulomb gap with constant s0, and
Mott hopping sxx ~ T2m exp��T0�T�1�3� for various m,
all matching our data worse. From these fits to Eq. (1)
we are able to extract the characteristic temperature T0 in
the VRH regime. To stay well inside this localized regime
we take into account only filling factors where the low
temperature conductivity is at least 2 orders of magnitude
below the critical conductivity sc.

In Fig. 2 the characteristic temperature T0 is plotted
against the distance jdnj � jn 2 ncj to the critical point
nc. The data follows a power-law behavior T0 ~ jdnjg ,
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FIG. 1. (a) Conductivity sxx of sample S1 at different tem-
peratures for the transition between plateaus n � 2 and n � 1.
(b) Full width at half maximum Dn of the conductivity peak fit-
ted by a power-law Dn ~ Tk . (c) Variable-range hopping fit of
sxx to Eq. (1) with a prefactor s0 ~ 1�T . The axes are rescaled
to show a straight line for the prediction of Eq. (1).
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represented by straight lines in this plot, up to distances
as large as jdnj � 0.3. This demonstrates that the local-
ization length j ~ 1�T0 follows a scaling behavior deep
into the localized regime. The lines are drawn for the
proposed universal scaling exponent g � 2.35 and show
a nice agreement to the data within the experimental un-
certainty. This result strongly supports the proposed uni-
versality, being consistent with numerical calculations ([1]
and references therein) as well as with size dependent
scaling experiments [7] and with a VRH analysis of the
frequency dependence of the conductivity [25]. It under-
lines the fact that our direct scaling analysis in the VRH
regime suits much better as an access to the localization
length and its scaling behavior than temperature dependent
peak-width scaling where no universality of the exponent
k � p�2g is observed. As g is shown to be universal
we have to attribute this to the temperature exponent p in
LT ~ T2p�2. In fact, for any predictions on p we are still
lacking a sufficient knowledge of the temperature depen-
dent transport mechanisms in the metallic regime of the
QHE plateau transition.

Now we will estimate the precision of our measure-
ment of the scaling exponent. Linear fits of ln�T0� �
g ln�dn� 1 const scatter within 10% around the proposed
universal exponent g � 2.35. The fitted values are
2.36 6 0.09 (n . nc) and 2.20 6 0.04 (n , nc) for S1,
2.10 6 0.03 (n , nc), and 2.08 6 0.04 (n , nc) for S2,
and 2.46 6 0.06 (n . nc) and 2.50 6 0.04 (n , nc)
for S3. The given error bars are the pure statistical 1s
intervals resulting from the fit. The total experimental
error is presumably larger due to additional systematic
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FIG. 2. Characteristic temperature T0 as a function of the dis-
tance jdnj to the critical point for both sides of the n � 1 ! 2
plateau transition on a logarithmic scale. The data for differ-
ent samples S1, S2, and S3 are shifted for clarity. The vertical
size of the symbols equals the statistical 2s uncertainty of T0
due to the fits shown in Fig. 1. The lines show the predicted
power-law behavior T0 ~ jdnjg with the proposed universal ex-
ponent g � 2.35.
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errors: The scaling with filling factor distance dn

results from the more fundamental scaling with energy
distance dE � E 2 Ec from the critical point. As neither
E nor Ec is known, the relation dn ~ dE is used to
translate the prediction to measurable quantities. This
relation is exactly valid in the case of a flat density of
states (DOS) D�E� � D�Ec�. Assuming a more realistic
Gaussian DOS, a significant deviation from the linear
relation dn ~ dE is observed, e.g., 10% for dn � 0.3.
Additionally the extra doping with different scatterers
and different spatial dopant distributions leads to a more
complicated individual asymmetric DOS for each sample
[32]. This introduces a further error in dn ~ dE even for
smaller dn. The asymmetric DOS also leads to a tem-
perature dependence of the maximum in sxx, leading to
an uncertainty of approximately 60.005 in nc. Summing
up we estimate the uncertainty of the relation dn ~ dE
to 5% 10% for dn � 0.05, . . . , 0.3. Thus the deviation
between the data points and the lines in Fig. 2 lies within
the experimental uncertainty.

Until now we used the term scaling in a rather reduced
sense as a synonym for a power-law behavior of the local-
ization length j. Of course, scaling includes much more,
namely the existence of a single parameter scaling func-
tion sxx � f�x� with a parameter x�T , dn�. Using our
above results in the VRH regime, an appropriate defini-
tion is x � jdnjg�T ~ T0�T with the above deduced ex-
ponents g. The postulation of single parameter scaling
together with the finding of s0 ~ 1�T then fixes the pref-
actor in Eq. (1) to s0�dn,T� � s�jdnjg�T with a con-
stant s� and yields a scaling of the conductivity

sxx

µ
jdnjg

T

∂
� s� jdnjg

T
exp

√
2

s
T�

jdnjg

T

!
, (2)

where T� is constant.
In Fig. 3 we have plotted all the conductivity data

sxx�n, T� for n . nc as a function of a single parameter
jdnjg�T . The values for g are taken from the power-law
fits of T0. Rescaling the axes in a proper way indeed
shows that all experimental points fall onto straight
lines as represented by the scaling function in Eq. (2).
Therefore, the conductivity in the VRH regime for
dn , 0.3 and n . nc follows the stringent postulation of
single parameter scaling and thus demonstrates the large
validity range of the universal scaling phenomenon in the
transition between QHE plateaus.

For n , nc, i.e., approaching the spin gap induced
plateau at n � 1, the single parameter rescaling does not
look as good as for approaching the Landau gap at n � 2,
although Fig. 2 showed the same quality of T0 scaling for
both sides of the transition. This discrepancy probably
mirrors a more complicated behavior of the prefactor s0
in Eq. (1). Obviously, it can no more be written as a simple
function jdnjg�T ~ T0�T . Such a complicated behavior
in this regime is no surprise, taking into account the redis-
tribution of electrons between spin states and the emerging
of spin textures as a function of n at this filling range [34].
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FIG. 3. Rescaling of the conductivity sxx�T , n�, presented for
sample S1 in Fig. 1(c), as function of a single parameter x �
jdnjg�T for n . nc (T � 60 700 mK, jdnj , 0.3). Inset:
Test of scaling with a single parameter y � jdnj2g�F for the de-
pendence on electric field (F � 2 200 V/m, sxx $ 1024e2�h).

In addition to the temperature dependence of sxx in the
VRH regime we have also investigated its dependence on
the electric field strength F. In the nonlinear regime at high
voltages the effect of F can be interpreted as an effective
temperature TF � eFj�2kB [24]. Using Eq. (1) the con-
ductivity is then rewritten to sxx � s

F
0 �F� exp�2

p
F0�F �

with F0 ~ T0�j ~ 1�j2. Analogous to the single pa-
rameter scaling with temperature in the VRH regime, the
natural reduced parameter for scaling with electric field is
defined by y�F, n� � jdnj2g�F ~ T0�TF . Applying such
an analysis to our data without any additional fit parame-
ter [i.e., using the exponents g as determined from T0�n�
we find for n . nc a single parameter scaling for all data
in the range jdnj2g�F , 4 mm�V, which is equivalent to
the condition TF�T0 . 0.01 for the ratio of the effective
temperature TF ~ Fj and the characteristic energy scale
T0 ~ 1�j. An example of single parameter scaling for
sample S2 is shown in the inset of Fig. 3

In conclusion, we have investigated the temperature and
electric field dependence of the conductivity in the QHE
plateau transition for samples where no universal behav-
ior is found in the conventional temperature dependent
peak-width scaling experiments. We find a revival of uni-
versality in the VRH regime where the localization length
j scales as j ~ jdnj2g with an experimentally deduced
scaling exponent close to the theoretically expected value
g � 2.35 6 0.03. Even further, we have shown that all
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the data on the Landau gap side of the transition can be
rescaled on a single parameter function over more than 5
orders of magnitude in the conductivity.
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