MAGNETOCONDUCTIVITY OF METALLIC Insb IN THE EXTREME QUANTUM LIMIT

S.S. Murzin*, A.G.M. Jansen and U. Zeitler.

Max-Planck-Institut für Festkörperforschung, Hochfeld-Magnetlabor, 166X, F-38042 Grenoble Cedex, France.

In the extreme quantum limit of the applied magnetic field, the resistivity tensor of n-type InSb has been measured in magnetic fields up to 20 T and temperatures down to 50 mK. For decreasing temperatures below 1 K, the transverse resistivity shows an anomalous decrease with a logarithmic temperature dependence, but the Hall effect is temperature independent. Because of the constant number of electrons, the observed phenomenon is totally different from the usually observed metal-insulator transition induced by a magnetic field.

For metallically doped semiconductors in strong magnetic fields, the extension of the electronic wavefunction at the impurity shrinks and a metal-insulator transition can be induced by the magnetic field (1). Experimentally this magnetic freeze-out of the electrons is observed in an applied magnetic field with a strong increase in all the elements of the resistivity tensor. This increase is more pronounced at lower temperatures. Ignoring the disorder which is inherently present in a doped semiconductor, correlated phenomena for the interacting electron system in a magnetic field (spindensity-wave, charge-density-wave, crystal) have been predicted (2) with similar effects on the transport properties. below the metal-insulator transition, investigated the magnetoconductivity doped InSb in magnetic fields in the extreme quantum limit with only one spin-splitted Landau level occupied by the electrons, and observed an anomalous behaviour in the magnetotransport data.

The studied InSb samples were single crystalline with electron concentrations n above 10¹⁶ cm⁻³ (InSb 1: 1.4 10¹⁶; InSb 2: 5.6 10¹⁶; InSb 3: 5.4 10¹⁶). The dimensions of the bulk samples were of the order of 1 mm² in cross section and 10 mm in length. The various components of the resistivity tensor were measured in a ³He/⁴He dilution refrigerator in fields up to 20 T using phase-sensitive detection techniques.

In Figure 1 we have plotted the transverse (ρ_{xx}) and Hall (ρ_{xy}) resistivities for InSb 3 as a function of the magnetic field (parallel to the z-axis) at \simeq 1 K and 100 mK. The Shubnikov-de Haas oscillations in ρ_{xx} end up in a strong increase of the resistivity above 8 T

as a manifestation of the extreme quantum limit. In the extreme quantum limit the measured transverse resistivity decreases with decreasing temperature. The amount of

FIGURE 1 Magnetic field dependence of the transverse resistivity $\rho_{\rm xx}$ (a) and Hall resistivity $\rho_{\rm xy}$ (b) for the n-InSb 3 sample at $\simeq 1$ K and $\simeq 100$ mK. The Hall resistivity was independent of temperature.

^{*} permanent address: Institute of Solid State Physics, Chernogolovka, 142432 USSR.

temperature dependence in ρ_{xx} increases with increasing magnetic field. The Hall resistivity ρ_{xy} varies approximately linearly with the magnetic field. The structure in ρ_{xy} around 8 T can be ascribed to magnetic quantum oscillations in the Hall effect. The Hall coefficient $R = \rho_{xy}/H$ reveals an oscillatory behaviour similar to the Shubnikov-de Haas effect in the transverse resistivity.

The observed temperature dependence of ρ_{xx} and ρ_{xy} in the extreme quantum limit differs from related work on the metal-insulator transition, where both $\rho_{\rm xx}$ and $\rho_{\rm xy}$ increase for decreasing temperatures (3). The constant Hall coefficient can be interpreted as a constant number of electrons without any influence of magnetic freeze-out. The field for magnetic freeze-out to occur can be found from the Mott criterion by comparing the size of the electron wavefunction with the electron density, $na_{//}a_{\perp}^{2}=\delta^{3}$ with $\delta=0.3$, $a_{//}=a_{B}/\ln(a_{B}/\hbar)^{2}$ and $a_{\perp}=2\hbar$ (a_{B} is the effective Bohr radius and $\Lambda=(\hbar/eB)^{1/2}$ the magnetic length in a magnetic field B) (4). The applied magnetic fields are not sufficiently high to reach the Mott criterion for the investigeted samples. In the presented experiments holds $\rho_{xy}>\rho_{xx}$, pointing to a good metallic system where $\rho_{xy}/\rho_{xx}=\omega_c\tau$ ($\omega_c=\mathrm{eB/m}^*$ is the cyclotron frequency with m'the effective mass). However, this condition is not observed in experimental data near the known metal-insulator transition induced by a magnetic-field.

In Figure 2 we have plotted the temperature dependence of the transverse resistivities for the investigated samples at constant magnetic fields in the extreme quantum limit. The resistivity decreases with a logarithmic temperature dependence for temperatures below 2 K. At the magnetic fields indicated in Figure 2, the variation in the Hall resistivity $\rho_{\rm xy}$ was much smaller (\leq 1 %). Because $\rho_{\rm xy} >> \rho_{\rm xx} \geq \rho_{\rm gg}$ in the applied magnetic fields, the conductivity components can be written as $\sigma_{\rm xx} \simeq \rho_{\rm xx}/\rho_{\rm xy}^2$, $\sigma_{\rm xy} \simeq 1/\rho_{\rm xy}$ and $\sigma_{\rm gg} = 1/\rho_{\rm gg}$ with $\sigma_{\rm gg} >> \sigma_{\rm xy} >> \sigma_{\rm xx}$. Hence, the conductivity $\sigma_{\rm xx}$ decreases also with a logarithmic temperature dependence upon cooling down. In a measurement of $\sigma_{\rm gg}$, a similar decrease with logarithmic temperature dependence has been observed.

The observed log-T dependence is difficult to explain with the dimensionality of our bulk samples. In disordered systems a log-T dependence is expected for two-dimensional systems in view of diffusion related quantum phenomena in the transport properties (electron-electron interaction and weak localization). In a three-dimensional system, diffusional transport yields rather a $T^{1/2}$ -dependence.

FIGURE 2 The transverse resistivity $\rho_{xx}(T)$ normalized at T=1 K as a function of the temperature on a logarithmic scale for the different samples in the indicated magnetic fields.

The observed log-T dependence in ρ_{xx} yields $\sigma_{xx} \to 0$ in the limit $T \to 0$. This situation describes a Hall insulator in three dimensions, with a conductivity tensor analogously to that of the quantum Hall effect (zeros on the diagonal and constant σ_{xy}). For the possible occurence of such a novel state, the importance of the electron-electron interaction in a disordered system (5) in the extreme quantum limit of the magnetic field has been put forward (6). Especially in the extreme quantum limit, electron-electron interaction effects could give a large correction to the conductivity.

REFERENCES

- (1) B.I. Shklovskii and A.L. Efros, Electronic Properties of Doped Semiconductors (Springer Verlag, Berlin, 1984).
- (2) A.H. MacDonald and G.W. Bryant, Phys. Rev. Lett. 58 (1987) 515 and references therein.
- (3) S.B. Field, D.H. Reich, T.F. Rosenbaum, P.B. Littlewood and D.A. Nelson, Phys. Rev. B 38 (1988) 1856; M. Shayegan, V.J. Goldman, H.D. Drew, N.A. Fortune and J.S. Brooks, Solid State Commun. 60 (1986) 817.
- (4) S. Ishida and E. Otsuka, J. Phys. Soc. Japan 43 (1977) 124.
- (5) B.L. Al'tshuler and A.G. Aronov, Zh. Eksp. Teor. Fiz. 77 (1979) 2028 [Sov. Phys. JETP 50 (1979) 968].
- (6) S.S. Murzin, Pis'ma Zh. Eksp. Teor. Fiz. 44 (1986) 45 [JETP Lett. 44 (1986) 56].