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High Frequency Conductivity in the Quantum Hall Regime
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We have measured the complex conductivity sxx of a two-dimensional electron system in the quantum
Hall regime up to frequencies of 6 GHz at electron temperatures below 100 mK. Using both its imaginary
and real part we show that sxx can be scaled to a single function for different frequencies and several tran-
sitions between plateaus in the quantum Hall effect. Additionally, the conductivity in the variable-range
hopping regime is used for a direct evaluation of the localization length j. Even for large filling factor
distances dn from the critical point we find j ~ dn2g with a scaling exponent g � 2.3.
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It is widely accepted that the understanding of the inte-
ger quantum Hall effect (QHE) is closely related to a disor-
der driven localization-delocalization transition occurring
in two-dimensional electron systems (2DES) in high mag-
netic fields [1]. Many experimental and theoretical works
approve the interpretation of the transition between ad-
jacent QHE plateaus as a quantum critical phase transi-
tion. It is governed by a diverging localization length
j ~ jE 2 Ecj

2g which scales with the distance of the en-
ergy E from the critical energy Ec in the center of a Landau
band. The exponent g � 2.3 is believed to be a universal
quantity independent of disorder. For finite systems with
effective size Leff theory predicts that the conductivities
sab follow scaling functions sab � fab�Leff�j�E�� re-

sulting in a finite width DE ~ L
21�g
eff of the transition re-

gion. The effective system size Leff is determined by the
physical sample size, the electron temperature T , or the
frequency f.

The most common test of scaling uses an analysis of the
temperature or frequency dependence of the conductivity
peak width in the QHE plateau transition. However, lack-
ing an exact expression for Leff�T , f�, this method does
not allow direct access to the scaling behavior of the local-
ization length.

An alternative approach to scaling was proposed by
Polyakov and Shklovskii [2]. Using the fact that the con-
ductivity sxx in the QHE plateaus at low temperatures is
dominated by variable-range hopping (VRH) [3] a direct
access to the localization length j can be gained from an-
alyzing the dependence of sxx on temperature, current,
and frequency. Experimentally mainly the temperature de-
pendence of sxx in the VRH regime was investigated [4].
However, due to an unknown theoretical prefactor, j could
only be estimated from these experiments.

In contrast, the frequency driven variable-range hop-
ping conductivity sxx�f� [in the limit sxx�f� ¿ sxx�0�]
is given by [2]

Resxx�v� �
2p

3
ee0jv , (1)
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linearly depending on both frequency f � v�2p and lo-
calization length j with no unknown prefactors.

Here we report on measurements of the complex con-
ductivity sxx up to frequencies f � 6 GHz at low tem-
peratures down to below 100 mK. We will show that
Im�sxx� can be scaled with a single-parameter function to
Re�sxx�, independent of temperature, frequency, and fill-
ing factor. Second, we will use Eq. (1) to directly mea-
sure the localization length j deep into the variable-range
hopping regime for several QHE plateau transitions. Its
filling factor dependence follows a scaling behavior j ~

jn 2 ncj
2g with g � 2.3 up to large distances jn 2 ncj $

0.3 from the critical point nc. In the center of the QHE
plateaus j is found to be limited by the magnetic length,
the natural length scale of the quantum Hall state.

The two-dimensional electron system used in our experi-
ments was realized in an AlGaAs�GaAs heterostructure
grown by molecular beam epitaxy and lies 75 nm under-
neath the surface. Its electron mobility and density are
m � 35 m2�Vs and n � 3.3 ? 1015 m22. The sample
was patterned into Corbino geometry with contacts fab-
ricated by standard Ni�Au�Ge alloy annealing. This ge-
ometry allows a direct two-point measurement of the
longitudinal conductivity sxx at high frequencies. For
an ideal Corbino geometry sxx is given by 2psxx �
G ln�r2�r1�. G � I�U is the two-point conductance with
current I and voltage U measured at the same contacts.
The sample dimensions of our Corbino ring are r2 �
820 mm for the outer and r1 � 800 mm for the inner
radius.

The conductance measurement at high frequencies is
realized by a reflection measurement setup: The sample
acts as load of a high frequency coaxial line with a charac-
teristic impedance of Z0 � 50 V. A load impedance Z �
1�G deviating from Z0 leads to reflection of an incident
wave at the load with a complex reflection coefficient
RS � �Z 2 Z0���Z 1 Z0�. The total reflection coeffi-
cient R of the loaded line is made up of the sample reflec-
tion RS and of properties of the line itself such as phase
shifts, losses, and reflections at interconnections. A careful
© 2001 The American Physical Society
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calibration of these frequency dependent contributions
of the line allows the extraction of RS�f� and therefore of
the complex sample conductivity sxx�f� from the direct
accessible quantity R�f�. The sample dimensions were
chosen as a compromise between sensitivity, which is
largest for a sample impedance Z close to Z0 � 50 V, and
the avoidance of size effects for too small ring widths [5].

The sample and coaxial line were fitted into a dilu-
tion refrigerator with base temperature TS , 50 mK us-
ing a multistep thermal sinking of the line. The sample
is situated in the center of a superconducting solenoid
capable of producing magnetic fields up to B � 15 T.
The reflection R of the coaxial line terminated with the
sample is measured with a network analyzer with a fre-
quency range f � 100 kHz to 6 GHz using power levels
P # 275 dBm which were checked not to influence the
measured conductivity. The analyzer was used in continu-
ous wave mode with fixed frequency while stepping the
magnetic field.

Figure 1 shows the real part Re�sxx� of the measured
conductivity as a function of the filling factor n �
nh�eB. The larger measurement noise with rising fre-
quency is a consequence of lower transmission of the
coaxial lines and thus a stronger damped signal at high
frequencies. The plot shows well pronounced Shubnikov–
de Haas oscillations with zero conductivity at integer
filling factors and maxima near half integer n. Every
peak corresponds to the transition between adjacent
quantum Hall states with a critical point nc at maximum

σ

ν

FIG. 1. Real part of the conductivity at different frequencies.
The squares are the raw data points, the line is derived by Gauss-
ian fits for n . 2 and simple smoothing for n , 2.
conductivity. The transition n � 1 ! 2 within the lowest
Landau level deviates from the other transitions by form
and amplitude of the peak and shows a shoulder possibly
originating from the presence of an impurity band [6].

The other transitions are very symmetric and can be
fitted by Gaussians. This fit is used to derive the position of
the critical filling factors nc and the critical conductivities
sc. For low frequencies the conductivity is lowered by
a frequency dependent contact resistance present in our
two-point measurement [7]. At higher frequencies this
effect becomes negligible and one measures the pure bulk
conductivity. For f $ 2 GHz and n . 2 the value sc �
0.17e2�h is the same for all transitions and independent
of frequency as expected by scaling theory, but deviates
from the proposed universal value 0.5e2�h [8]. A possible
explanation for this discrepancy was given by Ruzin et al.
[9], who proposed fluctuations in the carrier density as the
cause of nonuniversal critical conductivity values.

Previous experiments by Engel et al. [10] and Balaban
et al. [11] were restricted to a measurement of the real part
of sxx , whereas our technique gives access to both the real
and imaginary part. This allows an additional test of uni-
versal frequency scaling. As an example we show the real
and the imaginary part of the complex conductivity sxx

for f � 3 GHz in Fig. 2a. Im�sxx� and Re�sxx� display
a similar symmetry around the critical points, which are
marked by the maxima of the conductivity. In the QHE
plateau centers between two critical points sxx tend to zero
(except for n � 5 where spin splitting is no longer fully
resolved). Approaching the critical points both Im�sxx�
and Re�sxx� start to rise to positive value. While to our
knowledge there is no published theoretical prediction of
the imaginary part of the hopping conductivity of interact-
ing electrons in high magnetic fields this behavior agrees
qualitatively with the theory of Efros [12] for low mag-
netic fields. He calculated Im�sxx� ~ ln�vph�v�Re�sxx�
with vph the characteristic phonon frequency, which gives
a linear dependence between Im�sxx� and Re�sxx� at fixed
frequency.

When moving closer towards the critical point, Im�sxx�
starts dropping back to a value near zero, whereas sxx

continues increasing up to smax
xx � 0.17e2�h for the

sample investigated. This agrees with the expectation for a
quasimetallic behavior of a 2DES at the critical point. The
crossover between the variable-range hopping regime and
the metallic regime occurs at a conductivity Re�sxx� �
0.4smax

xx , independently of frequency �f $ 1 GHz� and
temperature.

The extra information gained from the imaginary part
allows a new test of the applicability of scaling theory. For
comparison between theory and experiment one can use
the relation dE � E 2 Ec ~ dn � n 2 nc in the filling
factor range 0 # dn & 0.3. Here, the error is less than
10% in a Gaussian model of the density of states. The
theory predicts a complex conductivity following a scal-
ing function sxx�f, dn� � gxx�Lf�j�dn�� [13], where
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FIG. 2. (a) Real (broken line) and imaginary (full line) part of
sxx versus filling factor for f � 3 GHz. (b) Plot of Im�sxx�
vs Re�sxx� for f � 3 GHz (data smoothed by 2nd order poly-
nominal smoothing for noise reduction). The four curves for
different plateau transitions, marked with different symbols, co-
incide. The data around the not fully resolved plateau n � 5
are omitted. Inset: The same plot for two different frequencies
(f � 3 GHz and f � 5.4 GHz), each curve including all four
transitions in the range n � 2 6. Again the curves collapse to
a single function.

Lf ~ f2z is the frequency dependent dynamic length.
Since Re�sxx� depends monotonically on dn we can
invert Resxx�y� and replace the argument y � Lf�j�dn�
in Imsxx�y� with some function g21�Resxx�. Doing
this we expect an explicit, transition, and frequency
independent function Im�sxx� � g̃�Re�sxx��. In Fig. 2b,
where Im�sxx� vs Re�sxx� at f � 3 GHz is shown for
different transitions, such a universal scaling is indeed
observed. We find a similar agreement for all frequencies
f $ 2 GHz. As an example the comparison of the
filling factor range n � 2 6 is shown for frequencies of
f � 3 GHz and f � 5.4 GHz in the inset of Fig. 2b.
Although the transition width Dn for the two frequencies,
defined as full width at half maximum of the conductivity
peaks, differs by a factor of 1.5 the shape in this kind
of plotting of Im�sxx� versus Re�sxx� agrees. This
insensitivity on filling factor and frequency confirms the
scaling behavior of the sample.

Let us now turn to the second central topic of this Letter,
namely a direct experimental access to the localization
length j. To test for conventional scaling behavior we
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have investigated the temperature and voltage dependence
of the plateau transition width Dn. Both follow power
laws Dn ~ Tk and Dn ~ Va with exponents k � 0.43
and a � 0.22 as found in most previous experiments [1].
The frequency dependence of Dn is also found to be in
agreement with scaling; for details, see [7].

A similar analysis of Dn as a function of frequency has
already been performed by Engel et al. [10] and Balaban
et al. [11] with contradicting results concerning the valid-
ity of scaling. However, it is important to stress that al-
though the plateau transition is a powerful tool for the test
of scaling, it is only an indirect approach to the localiza-
tion length. In particular, the failure of transition width
scaling found in the data by Balaban et al. [11] does not
entail inevitably a failure of universal localization length
scaling.

Using Eq. (1) our high frequency measurements allow
a direct evaluation of the localization length, provided that
sxx�f� ¿ sxx�0� for a fixed filling factor. This is equiva-
lent to j ø LT , where the temperature length LT is com-
monly interpreted as inelastic scattering length. Examples
for linear fits of our data to Eq. (1) are shown in Fig. 3a.
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FIG. 3. (a) Linear fit of the frequency dependence for two
different filling factors. (b) Localization length j as a function
of filling factor. The error bars correspond to the uncertainty
of the linear fits. Around half-integer filling factors sxx�f� ¿
sxx�0� is not fulfilled and thus the determination of j is not
possible. The solid line denotes the filling factor dependence of
the magnetic length lm.
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FIG. 4. Localization length j as a function of the filling factor
difference dn � jn 2 ncj to the nearest critical point nc for
both sides of the n � 3 plateau. The straight line corresponds to
the expected power law with known universal exponent g � 2.3
and the prefactor chosen to agree with the data.

Using Eq. (1) with e � 12 for GaAs the localization
length j can be directly extracted from the slope of these
linear fits. The resulting dependence of j on n is plotted
in Fig. 3b. In the same graph the filling factor dependence
of the magnetic length lm �

p
h̄�eB is drawn. Though the

error bars are rather large compared to this length the plot
shows qualitatively, that the magnetic length, which is the
shortest possible length scale of the electron system in a
high magnetic field, sets the order of magnitude for the
localization length in the middle of the quantum Hall
plateaus. The plateaus for n $ 5 show a larger localiza-
tion length because the energy gaps are no longer fully
resolved at low magnetic fields.

With this direct measurement of the localization length
it is possible to test the scope of the power law j ~

jn 2 ncj
2g when approaching the QHE plateau. This is

shown in Fig. 4 for both sides of the n � 3 plateau. We
have restricted the comparison of the experimental data to
the expected scaling behavior to a range 0.13 & dn & 0.3.
For dn * 0.13 the sample is well within the variable
range hopping regime and an analysis following [2] can
be performed. For dn & 0.3 the proportionality between
dn � n 2 nc and the energetic distance to the critical
point dE � E 2 Ec is valid.

Data and power law with g � 2.3 agree well over the
complete range. The same agreement is found for other
plateaus except for filling factors slightly above even inte-
gers, where the topmost Landau band is nearly empty. On
first glimpse this agreement might be rather astonishing
because of the rather large distance from the critical point.
However, numerical calculations of Huckestein et al. [14]
also show a power law j ~ jE 2 Ecj

2g down to a local-
ization length of a few magnetic lengths lm.

In conclusion, we measured the frequency dependence
of the longitudinal conductivity sxx for frequencies up to
6 GHz. We were able to access both the real part and the
imaginary part of sxx which allowed us to perform a new
test of scaling behavior. Using the theory of Polyakov and
Shklovskii on variable-range hopping in the QHE we were
able to deduce the localization length. Its filling factor
dependence is consistent with universal scaling behavior
far into the QHE plateau.
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